

ECE 111

PN Junction

Dr. Abdallah Hammad Assistant professor Faculty of Engineering at Shoubra Benha University

Objective

Selected areas covered in this lecture:

- band diagram
- pn-junction
- depletion region
- depletion width
- built-in potential
- biased junction

P-N Junctions - Introduction

Charter member of the family of all the solid state devices.

Basic theory of operation of p-n junctions is essential to the understanding of all the other devices.

Many of these devices also contain parasitic p-n junctions. It is essential to understand how these parasitic junctions affect the performance of the main device.

What are p-n junctions?

In part I of this course we focused on **semiconductors** which are **either n-type or p-type**. Now we will study the behavior of samples that are doped with different type of impurities in different parts of the sample.

P-N Junction formation technology

There are three main methods of formation of p-n junctions:

Diffusion

Start with an n-type wafer. Diffuse a p-type impurity at a high temperature. Or start with a p-type wafer and diffuse an n-type impurity. In both cases a p-n junction is formed near the surface of the wafer. Typical junction depths are a few microns.

>Ion implantation

Start with an n-type wafer and shoot ions of a p-type impurity. Ion energies typically 50 - 200 KeV. Alternatively, implant ions of an n-type impurity into a p-type substrate.

≻Epitaxy

Start with an n-type wafer. Deposit a thin layer of p-type Si epitaxially (single crystal Si).

The first two techniques are extensively used in Si technology. Epitaxial junctions are more common in GaAs technology.

Step junction versus linearly graded junction

Step junction:

If the conductivity type changes **abruptly** at some plane, then the junction is called a **step junction or abrupt junction**. **Epitaxial method** results in abrupt junctions. The plane $x = x_j$ at which the conductivity type changes is called the junction-plane or the metallurgical junction.

 $X < X_j$, $N_A > N_D$ (usually N_D on the p-side is very small) $X > X_j$, $N_D > N_A$ (usually N_A n-side is very small)

Dr. Abdallah Hammad (2012-2013)

Linearly graded junctions:

Diffused junctions are generally linearly graded junctions. The plane $X=X_j$ at which $N_D = N_A$ is called the junction plane.

increases linearly to the left of X_j . Electron (n= N_D - N_A) concentration increases linearly to the right of X_i

Linearly graded junction

pn-junction in thermal equilibrium

abrupt junction

requirement of thermal equilibrium

for thermal equilibrium

consequence:

the Fermi levels in the p- and n-type semiconductors must be equal

Thermal equilibrium condition

At equilibrium condition the drift current due to the electric field must exactly cancel the diffusion current due to the concentration gradient

$$J_{n} = q\mu_{n}n\mathbf{E} + qD_{n}\frac{dn}{dx} = 0$$
$$J_{p}\mu = \mathbf{p}_{p} \quad \mathbf{E}D \quad p \frac{dp}{dx} = 0$$

1D Poisson's equation:

- ψ electrostatical potential
- - space charge density
- $\boldsymbol{\epsilon}_{s}$ semiconductor permittivity

Poisson's equation for abrupt junction

electric field distribution

$$\frac{d\mathbf{E}(x)}{dx} = \frac{-qN_A}{\varepsilon}$$

$$\mathbf{E}(x) = -\frac{qN_A}{\varepsilon} \left(x + x_p \right)$$

electric field distribution

maximum electric field

potential distribution

$$\mathbf{E}(x) = -\frac{d\psi(s)}{dx}$$
$$\psi(s) = -\int \mathbf{E}(x)dx$$

Dr. Abdallah Hammad (2012-2013)

potential distribution $-x_p < x < 0$

 $\psi(x) = \int \frac{qN_A}{\varepsilon} \left(x + x_p\right) dx$ $= \frac{qN_A}{\varepsilon} \left(\frac{x^2}{2} + x_p x \right) + \psi_1$

with $(-x_{n}) = 0$

 $=\frac{qN_A}{\varepsilon}\frac{x_p^2}{\gamma}$

 $\psi(x) = \frac{qN_A}{2\varepsilon} (x_p + x)^2$

potential distribution $0 < x < x_n$

/

$$\psi(x) = \int \frac{qN_D}{\varepsilon} (x_n + x) dx$$
$$= \frac{qN_D}{\varepsilon} \left(x_n x - \frac{x^2}{2} \right) + \psi_2$$
with $\psi(x_n) = V_{bi}$
$$\psi_2 = V_{bi} - \frac{qN_D}{\varepsilon} \frac{x_n^2}{2}$$
$$\psi(x) = V_{bi} - \frac{qN_D}{2\varepsilon} (x_n - x)^2$$

built-in potential

for x = 0 both expressions

$$\psi(x) = V_{bi} - \frac{qN_D}{2\varepsilon} (x_n - x)^2$$

$$\psi(x) = \frac{qN_A}{2\varepsilon} (x_p + x)^2$$

must give the same value:

$$\psi(0) = V_{bi} - \frac{qN_D}{2\varepsilon} x_n^2 = \frac{qN_A}{2\varepsilon} x_p^2$$
$$V_{bi} = \frac{q}{2\varepsilon} \left(N_D x_n^2 + N_A x_p^2 \right)$$

depletion width

depletion width

Dr. Abdallah Hammad (2012-2013)

one-side abrupt junction

if $x_p \ll x_n$

potential vs. carrier concentration

The derivation will be done in the lecture:

$$V_{bi} = \psi_n - \psi_p = \frac{kT}{q} \ln\left(\frac{N_D N_A}{n_i^2}\right)$$

generalized depletion layer width

$N_{\rm B}$ – lightly doped bulk concentration V- positive for FB, negative for RB

Dr. Abdallah Hammad (2012-2013)